پیشبینی ضریب زبری کانالهای روباز با بستر فرسایشی با استفاده از سیستمهای عصبی مصنوعی
نویسندگان
چکیده مقاله:
در هیدرولیک رودخانهها، بستر متحرک بوده و مقاومت در برابر جریان یا ضریب زبری متغیر است. در این حالت، نمیتوان رابطه مقاومت را به طور مستقیم و بدون آگاهی از نحوة تغییر ضریب مقاومت در شرایط مختلف جریان و رسوب، به کار برد. با توجه به تأثیر پارامترهای متعدد در ضریب زبری، تاکنون رابطه قطعی جهت محاسبه ضریب زبری ارائه نشده است. در این تحقیق، ابتدا آزمایشات لازم در کانالی در حالت فرم بستر دون متعادل جهت به دست آوردن دادههای هیدرولیکی مورد نیاز ترتیب داده شد. سپس با استفاده از شبکههای عصبی پیشخور و شعاع مبنا از یک سو و نیز شبکههای عصبی- فازی از سوی دیگر، مقدار ضریب زبری مانینگ برای هر دو حالت بابعد و بیبعد پیشبینی گردید. نتایج حاصله نشان داد که شبکه عصبی قابلیت و کارایی بالایی در شبیهسازی ضریب زبری بستر داشته و مدل عصبی- فازی با وجود کارایی بهتر نسبت به شبکههای شعاع مبنا دارای عملکرد ضعیفتری در مقایسه با شبکه پیشخور است. با توجه به نتایج حاصل از تحلیل حساسیت مشخص شد که پارامتر مستقل Reبرای ضریب زبری با بعد و پارامتر مستقل R/D50برای ضریب زبری بیبعد بیشترین تأثیر را بر روی ضریب زبری دارند. به لحاظ کمی نیز در بهترین حالت ارزیابی آزمون نرمافزار Matlab، برای شبکه پیشخور در حالت با تابع هدف بیبعد 935/0 R= و 908/1 MNE= و در حالت با تابع هدف با بعد 941/0 R=، 04/2 MNE=، برای شبکه شعاع مبنا با تابع هدف بیبعد 8/0R= و 029/0 MNE= و در حالت تابع هدف با بعد 83/0 R= و 0229/0 MNE= و نهایتاً برای شبکه عصبی- فازی در حالت با تابع هدف بیبعد 912/0 R= و 662/2 MNE= و برای حالت با تابع هدف بابعد 922/0 R= و 472/2 MNE= مشاهده گردید که دقت بالای پیش بینیها را نشان میدهد.
منابع مشابه
پیش بینی ضریب زبری کانال های روباز با بستر فرسایشی با استفاده از سیستم های عصبی مصنوعی
در هیدرولیک رودخانه ها، بستر متحرک بوده و مقاومت در برابر جریان یا ضریب زبری متغیر است. در این حالت، نمیتوان رابطه مقاومت را به طور مستقیم و بدون آگاهی از نحوة تغییر ضریب مقاومت در شرایط مختلف جریان و رسوب، به کار برد. با توجه به تأثیر پارامترهای متعدد در ضریب زبری، تاکنون رابطه قطعی جهت محاسبه ضریب زبری ارائه نشده است. در این تحقیق، ابتدا آزمایشات لازم در کانالی در حالت فرم بستر دون متعادل جه...
متن کاملبرآورد ضریب زبری بستر کانالهای خاکی با استفاده از روشهای شبکههای عصبی مصنوعی و سیستمهای استنباط فازی عصبی-تطبیقی
برآورد ضریب زبری در طراحی کانالهای خاکی از اهمیت زیادی برخوردارمی باشد. این مساله حتی در مدل سازی عددی پدیده انتقال رسوب دارای اهمیت به سزایی میباشد. به همین منظور، تاکنون روش های تجربی زیادی برای تخمین زبری در کانال ها ارائه شده است که غالبا دارای خطای زیادی در تخمین پارامتر مورد نظر می باشند. بنابراین، در این مقاله با استفاده از روشهای ابزار محاسبات نرم مبتنی بر شبکههای عصبی مصنوعی و سیست...
متن کاملتخمین ضریب پخش طولی آلاینده ها در مجاری روباز با استفاده از شبکه عصبی مصنوعی
انتقال طولی آلاینده ها یکی از مراحل مهم در فرآیند رقیق سازی آلاینده ها میباشد که شناخت آن از اهمیت ویژهایبرخوردار است. دشواری اندازه گیری ضریب انتشار طولی در رودخانهها نیاز به استفاده از روشهای مناسب مدلسازیدر پیشبینی این ضریب را بیشتر میکند. یکی از روشهای کارآمد مدل سازی شبکه عصبی مصنوعی است که یکی ازتکنیکهای هوش مصنوعی محسوب میشود. در این مدل بدون استفاده از معادلات پیچیده غیرخطی، میتوان دینا...
متن کاملتخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال
The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...
متن کاملتخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال
The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...
متن کاملتخمین ضریب پخش طولی آلاینده ها در مجاری روباز با استفاده از شبکه عصبی مصنوعی
انتقال طولی آلاینده ها یکی از مراحل مهم در فرآیند رقیق سازی آلاینده ها میباشد که شناخت آن از اهمیت ویژهایبرخوردار است. دشواری اندازه گیری ضریب انتشار طولی در رودخانهها نیاز به استفاده از روشهای مناسب مدلسازیدر پیشبینی این ضریب را بیشتر میکند. یکی از روشهای کارآمد مدل سازی شبکه عصبی مصنوعی است که یکی ازتکنیکهای هوش مصنوعی محسوب میشود. در این مدل بدون استفاده از معادلات پیچیده غیرخطی، میتوان دینا...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 45.3 شماره 80
صفحات 13- 24
تاریخ انتشار 2015-11-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023